Determinants and inverses

In this section, we give some properties of the determinants of invertible matrices, and then use determinants to give a formula for the solution of $A \vec{x}=\vec{b}$ when A is invertible, without calculating A^{-1}.

Product Theorem: If A and B are $n \times n$ matrices, then

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

Notice that if A is invertible, this tells us that

$$
\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)=\operatorname{det}(I)=1 .
$$

so $\operatorname{det}(A) \neq 0$, and $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.

Conversely, if A is a matrix and $\operatorname{det} A \neq 0$, we can take A to its RRE form R via elem. operations:

$$
R=E_{k} E_{k-1} \cdots E_{2} E_{1} A
$$

so $\operatorname{det} R=\underbrace{\operatorname{det} E_{k} \cdots \operatorname{det} E_{2} \operatorname{det} E_{1}}_{0}, \underbrace{\substack{\operatorname{det} A}}_{0}$

So $\operatorname{det} R \neq 0$, which means it doesn't have a wow of zeros, so $R=I \Rightarrow A^{-1}=\left(E_{k} E_{k-1} \cdot \ldots \cdot E_{1}\right)$, so A is invertible. We've thus proven the following:

Theorem: A is invertible if and only if $\operatorname{det} A \neq 0$.
Ex: If $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ 0 & 1 & 2 \\ 3 c & 0 & 1\end{array}\right]$, for which values of C is A invertible? i.e. When is $\operatorname{det} A \neq 0$?

Taking $R_{3}-3 c R_{1}$, we get

$$
\begin{aligned}
\operatorname{det} A & =\left|\begin{array}{ccc}
1 & 2 & -1 \\
0 & 1 & 2 \\
0 & 0-3 c(2) & 1-3 c(-1)
\end{array}\right|=\left|\begin{array}{ccc}
1 & 2 & -1 \\
0 & 1 & 2 \\
0 & -6 c & 1+3 c
\end{array}\right| \\
& =1 \cdot\left|\begin{array}{cc}
1 & 2 \\
-6 c & 1+3 c
\end{array}\right|=(1+3 c)-2(-6 c)=1+3 c+12 c=1+15 c
\end{aligned}
$$

so $\operatorname{det} A=0$ when $1+15 c=0$, ie. when $c=\frac{-1}{15}$.
Thus, A is invertible when $c \neq \frac{-1}{15}$.
Thu: $\operatorname{det} A^{\top}=\operatorname{det} A$.

Def: A square matrix is orthogonal if $A^{-1}=A^{\top}$.

What can we say about the determinant of orthogonal matrices? If A is orthogonal, then

$$
I=A A^{-1}=A A^{\top}
$$

so $l=\operatorname{det} I=\operatorname{det}\left(A A^{\top}\right)=\operatorname{det}(A) \operatorname{det}\left(A^{\top}\right)=\operatorname{det}(A)^{2}$
so $\operatorname{det} A= \pm 1$.

Adjugates
For a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, we defined the adjugate to be $\operatorname{adj}(A)=\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$.

For an $n \times n$ matrix, there is a simple description of the adjugate. First define the cofactor matrix of A to be $\left[C_{i j}(A)\right]$. i.e. the (i, j)-entry is the corresponding cofactor.

Def: The adjugate of A is the transpose of the cofactor matrix. That is,

$$
\operatorname{adj}(A)=\left[c_{i j}(A)\right]^{\top} .
$$

Ex: If $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ 0 & 3 & 1 \\ 4 & 7 & -1\end{array}\right]$, the cofactor matrix is

$$
\left[\begin{array}{lll}
\left|\begin{array}{cc}
3 & 1 \\
7 & -1
\end{array}\right| & -\left|\begin{array}{cc}
0 & 1 \\
4 & -1
\end{array}\right| & \left|\begin{array}{ll}
0 & 3 \\
4 & 7
\end{array}\right| \\
-\left|\begin{array}{cc}
2 & 0 \\
7 & -1
\end{array}\right| & \left|\begin{array}{cc}
1 & 0 \\
4 & -1
\end{array}\right| & -\left|\begin{array}{ll}
1 & 2 \\
4 & 7
\end{array}\right| \\
\left|\begin{array}{ll}
2 & 0 \\
3 & 1
\end{array}\right| & -\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right| & \left|\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right|
\end{array}\right]=\left[\begin{array}{ccc}
-10 & 4 & -12 \\
2 & -1 & 1 \\
2 & -1 & 3
\end{array}\right]
$$

so the adjugate is $\operatorname{adj}(A)=\left[\begin{array}{ccc}-10 & 2 & 2 \\ 4 & -1 & -1 \\ -12 & 1 & 3\end{array}\right]$

Just like in the 2×2 case, we can use the adjugate to find the inverse:

Adjugate Formula: If A is a square matrix, then

$$
A(\operatorname{adj} A)=(\operatorname{det} A) I
$$

Thus, if $\operatorname{det} A \neq 0$, the inverse of A is

$$
A^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj} A
$$

Warning: Do NOT use this formula to compute the inverse. This formula is for theoretical purposes only.

We can also use it to compute a single entry of the inverse of a matrix:

Ex: If $A=\left[\begin{array}{ccc}4 & 7 & 9 \\ 1 & 0 & 5 \\ 2 & 2 & -8\end{array}\right]$, what is the $(3,2)$-entry of A^{-1} ?

$$
\begin{aligned}
\operatorname{det} A=\left|\begin{array}{ccc}
4 & 7 & 9 \\
1 & 0 & 5 \\
2 & 2 & -8
\end{array}\right|= & \left|\begin{array}{ccc}
4 & 7 & -11 \\
1 & 0 & 0 \\
2 & 2 & -18
\end{array}\right|= \\
& \underset{\substack{\text { column 3 }}}{-1\left|\begin{array}{cc}
7 & -11 \\
2 & -18
\end{array}\right|=}=\underset{\substack{\text { cofaction } \\
\text { expansion } \\
\text { along row 2 }}}{-(-126+22)}=104
\end{aligned}
$$

The $(3,2)$-entry of A^{-1} will be the $(2,3)$-entry of the cofactor matrix divided by $\operatorname{det} A$.

So the $(3,2)$-entry is

$$
\begin{aligned}
\frac{1}{104} C_{23}(A)=\frac{1}{104}\left((-1)^{5}\left|\begin{array}{ll}
4 & 7 \\
2 & 2
\end{array}\right|\right) & =\frac{1}{104}(-(8-14)) \\
& =\frac{6}{104}=\frac{3}{52}
\end{aligned}
$$

Cranmer's Rule

The adjugate formula has an application to linear equations. specifically, recall that if A is an invertible matrix, then a system of equations

$$
A \vec{x}=\vec{b}
$$

has unique solution $\vec{x}=A^{-1} \vec{b}$. Applying the adjugate formula, this becomes

$$
\vec{x}=\frac{1}{\operatorname{det} A}(\operatorname{adj} A) \vec{b}
$$

Multiplying this out, we obtain Cramer's Rule (see book for details of how to derive this).

Cramer's Rule If A is an $n \times n$ invertible matrix, The solution to the system $A \vec{x}=\vec{b}$ is

$$
x_{1}=\frac{\operatorname{det} A_{1}}{\operatorname{det} A}, x_{2}=\frac{\operatorname{det} A_{2}}{\operatorname{det} A}, \ldots, x_{n}=\frac{\operatorname{det} A_{n}}{\operatorname{det} A},
$$

where for each k, A_{k} is the matrix obtained from A by
replacing column k with \vec{b}.
Ex: $\underbrace{\left[\begin{array}{lll}2 & 1 & 7 \\ 3 & 0 & 1 \\ 4 & 0 & 0\end{array}\right]}_{A}\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\underbrace{\left[\begin{array}{l}0 \\ 0 \\ 3\end{array}\right]}_{\vec{b}}$
$\operatorname{det} A=4\left|\begin{array}{ll}1 & 7 \\ 0 & 1\end{array}\right|=4$, so A is invertible.

$$
\begin{aligned}
& \operatorname{det} A_{1}=\left|\begin{array}{lll}
0 & 1 & 7 \\
0 & 0 & 1 \\
3 & 0 & 0
\end{array}\right|=3\left|\begin{array}{cc}
a_{\vec{b}} & \left.\begin{array}{ll}
1 & 7 \\
0 & 1
\end{array} \right\rvert\, \\
\substack{\text { expansion along } \\
\text { now } 3}
\end{array}\right|=3 \\
& \operatorname{det} A_{2}=\left|\begin{array}{lll}
2 & 0 & 7 \\
3 & 0 & 1 \\
4 & 3 & 0
\end{array}\right|=-3\left|\begin{array}{ll}
2 & 7 \\
3 & 1
\end{array}\right|=-3(2-21)=57 \\
& \operatorname{det} A_{3}=\left|\begin{array}{lll}
2 & 1 & 0 \\
3 & 0 & 0 \\
4 & 0 & 3
\end{array}\right|=-3\left|\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right|=-3(3)=-9
\end{aligned}
$$

so $x_{1}=\frac{3}{4}, \quad x_{2}=\frac{57}{4}, \quad x_{3}=\frac{-9}{4}$

Note: Creamer's rule is not a good way to solve systems of equations. Just like with the adjugate formula, it is only useful in theoretical applications.

Application: Polynomial interpolation

If we have several data points, how do we "fit" a polynomial to the data?

Ex: We are given the following stock price data:

Date	Stock price
Feb 1	$\$ 1$
Apr 1	$\$ 4$
July 1	$\$ 6$

We want to estimate the price of the stock on August l by finding a best fit quadratic polynomial:

$$
p(x)=r_{0}+r_{1} x+r_{2} x^{2}
$$

Where $x=$ month of the year, $p(x)=$ price on the first of that month.

Our 3 data points are $p(2)=1, p(4)=4, p(7)=6$.

$$
\begin{aligned}
& r_{0}+2 r_{1}+4 r_{2}=1 \\
& r_{0}+4 r_{1}+16 r_{2}=4 \\
& r_{0}+7 r_{1}+49 r_{2}=6
\end{aligned}
$$

This is three linear equations in 3 variables, so we can
solve:

$$
\left.\left.\begin{array}{l}
{\left[\begin{array}{ccc|c}
1 & 2 & 4 & 1 \\
1 & 4 & 16 & 4 \\
1 & 7 & 49 & 6
\end{array}\right]} \\
\longrightarrow\left[\begin{array}{lll|l}
1 & 2 & 4 & 1 \\
0 & 2 & 12 & 3 \\
0 & 5 & 45 & 5
\end{array}\right] \rightarrow\left[\begin{array}{lll|l}
1 & 2 & 4 & 1 \\
0 & 1 & 6 & 3 / 2 \\
0 & 5 & 45 & 5
\end{array}\right] \rightarrow\left[\begin{array}{lll|l}
1 & 2 & 4 & 1 \\
0 & 1 & 6 & 3 / 2 \\
0 & 0 & 15 & -5 / 2
\end{array}\right] \\
\end{array}\right]\left[\begin{array}{lll|l}
1 & 2 & 4 & 1 \\
0 & 1 & 6 & 3 / 2 \\
0 & 0 & 1 & -1 / 6
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
1 & 0 & -8 & -2 \\
0 & 1 & 6 & 3 / 2 \\
0 & 0 & 1 & -1 / 6
\end{array}\right] \rightarrow\left[\begin{array}{lll|l}
1 & 0 & 0 & -10 / 3 \\
0 & 1 & 0 & 5 / 2 \\
0 & 0 & 1 & -1 / 6
\end{array}\right]\right] .
$$

So $p(x)=-\frac{10}{3}+\frac{5}{2} x-\frac{1}{6} x^{2}$.
So an estimate for August 1 is $p(8)=\frac{-10}{3}+\frac{5}{2} \cdot 8+\frac{1}{6} \cdot 8^{2}=6$

Note: An n degree polynomial has $n+1$ coefficients, so if we have $n+1$ distinct data points, we can use this same method to try to find a degree n polynomial fit to the data. It turns out there is always a unique polynomial that works, called the interpolating polynomial. That is:

Theorem: If a_{1}, \ldots, a_{n} are distinct numbers, then $\operatorname{det}\left[\begin{array}{ccccc}1 & a_{1} & a_{1}^{2} & \cdots & a_{1}^{n-1} \\ 1 & a_{2} & a_{2}^{2} & \cdots & a_{2}^{n-1} \\ \vdots & a_{n} & a_{n}^{2} & \cdots & a_{n}^{n-1}\end{array}\right] \neq 0$.

This is called a Vandermonde determinant.

It has a formula given by:

$$
\operatorname{det}\left[\begin{array}{ccccc}
1 & a_{1} & a_{1}^{2} & \cdots & a_{1}^{n-1} \\
1 & a_{2} & a_{2}^{2} & \cdots & a_{2}^{n-1} \\
\vdots & a_{n} & a_{n}^{2} & \cdots & a_{n}^{n-1}
\end{array}\right]=\prod_{1 \leqslant j<i \leq n}\left(a_{i}-a_{j}\right) \text {. }
$$

Practice problems: 3.2 : $1 b c, 2 a d e, 3,6 b, 8 c, 9 b, 22 b$

